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Density functional and continuum dielectric theories have been combined to calculate molecular properties such
as hydration enthalpies, redox potentials, and absolute pKa values of transition metal cations in solution. The
discrete cluster model, which is treated explicitly by density functional theory, includes six waters in the first
hydration shell and another twelve waters in the second shell. The solvent reaction field is obtained from a
finite-difference solution to the Poisson-Boltzmann equation and is coupled to the nonlocal density functional
calculation in a self-consistent way. The calculated hydration enthalpies are 409, 1073, 431, and 1046 kcal/mol
for Mn2+, Mn3+, Fe2+, and Fe3+, respectively, comparing fairly well to the experimental measurements of 440,
1087, 465, and 1060 kcal/mol. The calculated redox potentials for the Mn2+/Mn3+ and Fe2+/Fe3+ pairs are 1.59
and 1.06 V, respectively, in good agreement with the experimental values of 1.56 and 0.77 V. The computed
absolute pKa values, 14.0,-6.5, 9.0, and-4.0 for Mn2+, Mn3+, Fe2+, and Fe3+, respectively, deviate significantly
from the experimental results of 10.6, 0.1, 9.5, and 2.2 but show the proper behavior with changes in oxidation
state and metal type. The calculated redox potentials and pKa values appear to converge toward the experimental
data with increasing size of the cluster models. For such highly charged cations, the second hydration shell in
the cluster model is indispensable, since this buffer shell retains strong hydrogen bonds and electron transfer
between the inner and outer shells as well as the solute-solvent dispersion interaction.

Introduction

Condensed phase environments impose significant effects on
the properties and reactivities of molecules. Often the quantum
chemical picture of a moleculein Vacuo is insufficient for
describing the electronic structures and reactions of molecules
in solution and of active sites in proteins.1 The last decade has
witnessed an upsurge of theoretical methods that incorporate
solvent effects into quantum mechanical calculations. As a
common strategy, these methods treat the solute molecule
quantum mechanically while handling the solvent classically.
For instance, many methods like the combined QM/MM
approach consider the microscopic structure of solvent molecules
explicitly. The energy of the solvent molecules is averaged by
molecular dynamics, the Monte Carlo approach, or force field
based minimization, and the periodic boundary conditions or
spherical boundary conditions are adopted to deal with the
infinite solvent environment.2 Another class of methods
employs a dielectric continuum model or polarizable dipoles
to represent the entire solvent region.3 In the continuum model,

the solute molecule is placed in a cavity immersed in the solvent
continuum and the solvent reaction field exerting on the solute
is then taken into account in a self-consistent way. This self-
consistent reaction field approach has been implemented at all
levels of quantum mechanics including semiempirical,4 ab
initio,5 and density functional methods.6 The application of this
approach to neutral and charged organic molecules is very
promising, but few calculations have been reported on transition
metal species.
Our main interests focus on metalloproteins and metalloen-

zymes in which the active sites contain charged high-spin metal
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centers.7 For such systems, both environmental effects from
the protein and intrinsic difficulties arising from the transition
metal sites represent challenges to theoretical calculations.
Density functional theory has proven an effective method for
the study of transition metal complexes.8 The recent imple-
mentation combining density functional and continuum dielectric
theories6a equips us with more appropriate tools. In this
combined method, the electronic structure of the solute is
computed by density functional methods in the presence of a
solution reaction field. The reaction field is then evaluated from
a finite-difference solution to the Poisson-Boltzmann equation,
and self-consistency between the reaction field potential and
the electronic structure is achieved by iteration. This technique
has been applied to study active site models of several
metalloenzymes including the iron-sulfur clusters (non-self-
consistent)9 and superoxide dismutase (SOD)10 in high dielectric
solvent. The extension of this method to investigate the active
sites including protein and protein-solvent environments is
currently underway.
In this paper, we use the combined density functional and

continuum dielectric techniques to calculate redox potentials
and pKa values for hydrated metal cations. These properties
are closely related to the energetics of electron and proton
transfer in inorganic and related bioinorganic systems. Calcula-
tion of these properties requires not only a high-level quantum
mechanical evaluation of the ionization potential and proton
affinity in gas phase but also a precise accounting of solvation
energy. In addition to the electrostatic interaction between the
solute and solvent, highly charged cations also induce charge
transfer between the metal center and surrounding aqueous
environment, which in turn affects the hydrogen bonds within
the hydration shells. To this end, building a reasonable cluster
model that retains most of the quantum effects within the solute
interior is vital. The goal of this study is therefore twofold.
First, we want to validate the usefulness of the current method
for calculations on transition metal systems, especially for
properties like redox potentials and pKa values. Second, by
constructing supermolecular models with different numbers of
hydration shells, we want to explore to what extent the
environment in the quantum region of the combined discrete-
continuum model should be explicitly included. The same
question applies when using these methods to study metallo-
proteins and metalloenzymes: How big should the active site
be?

Computational Details and Cluster Models

1. Density Functional Calculations. All calculations were carried
out using the Amsterdam Density Functional (ADF) package and its
precursor version AMOL11 with modifications to include a self-
consistent reaction field.6a The local density approximation (LDA) for
exchange and correlation used the parametrization of Vosko, Wilk, and
Nusair.12 The nonlocal corrections (NL), which are based on Becke’s
gradient correction to exchange13 and Perdew’s correction to correla-
tion,14 were added in each self-consistent cycle. Convergence was
achieved once the change in the mean of diagonal elements of the

density matrix was smaller than 0.0001. The numerical integration
scheme adopted was the polyhedron method developed by te Veldeet
al.15with the accuracy parameter ACCINT of 4.0. A set of uncontracted
triple-ú Slater-type orbitals (STO)16 was employed for the (n+ 1)s, (n
+ 1)p, andnd valence orbitals of the transition metal atoms. For the
2s and 2p orbitals of oxygen and 1s orbital of hydrogen, use was made
of the same quality basis augmented by extra d and p functions,
respectively. The inner core shells were treated by the frozen core
approximation. A set of auxiliary s, p, d, f, and g STO functions,
centered on all nuclei, was introduced to fit the molecular density and
to represent Coulomb and exchange potentials accurately.17 All
calculations were done with a spin-unrestricted scheme.
Geometry optimization of cluster models was done according to the

analytic gradient method implemented at the LDA level by Versluiset
al. and at the NL level by Fanet al.18 The optimization used the
Newton-Raphson method, and the hessian was updated with the
Broyden-Fletcher-Goldfarb-Shanno strategy.19 Convergence was
achieved when changes in coordinate values were less than 0.005 Å
and the norm of all gradient vectors was smaller than 0.01. Frequencies
of some species were evaluated from force constants calculated by
numerical differentiation of energy gradients.20 The relativistic cor-
rection was estimated by a quasi-relativistic calculation that included
the mass-velocity and Darwin terms in the first-order Hamiltonian
and the induced density changes.21 In this scheme, the core orbitals
were replaced by the relativistic ones which were obtained by numerical
solution of the atomic Dirac equation.
2. Fitting of ESP Charges. A modified version of the CHELPG

code of Breneman and Wiberg22 was used to fit the point charges from
the molecular electrostatic potentials (ESP) calculated by the ADF code.
The total net charge of the molecule and the three Cartesian dipole
moment components from density functional calculations were adopted
as constraint conditions for the fit.6a The fitted points lay on a cubic
grid between the van der Waals radius and the outer atomic radius
with a grid spacing of 0.2 Å. The outer atomic radius for all atoms
used was 5.0 Å, and the van der Waals radii for Mn2+/3+, Fe2+/3+, O,
and H were 1.5, 1.5, 1.4, and 1.2 Å, respectively. In order to minimize
the uncertainties in the fitting procedure, the singular value decomposi-
tion (SVD)23 method was introduced into the code to obtain a model
with stable atomic charges and an accurate molecular dipole moment.9

3. Solution of the Poisson Equation and Solvation Energy.The
MEAD (Macroscopic Electrostatics with Atomic Detail) program suite
developed by Bashford,24 which solves the Poisson-Boltzmann equa-
tion by a numerical finite-difference method, was employed to calculate
the solvent reaction field potential induced by the atomic ESP charges
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of the solute molecule. For this purpose, the solute molecule within
an interior region was assigned a dielectric constant ofεi ) 1, while
the region outside was assigned the experimental solvent dielectric of
εo ) 80 representing aqueous solution. For the purpose of defining
the dielectric boundary, atomic radii of 1.55 Å (Mn2+/3+ and Fe2+/3+),
1.40 Å (O), and 1.20 Å (H) were chosen. The solute interior was
defined as the region inaccessible to any part of a probe sphere of radius
1.4 Å rolling on the molecular surface of the atomic spheres. The
boundary between the interior and exterior so defined is equivalent to
Connolly’s definition of the molecular surface.25 No counterions were
included, which assumed that the ionic strength is 0. The resulting
Poisson equation was solved by using an overrelaxation algorithm23

on successively finer grids of size 613, 613, and 813 with linear spacings
of 1.0, 0.25, and 0.15 Å, respectively. Subtracting the potential
calculated in this way from the vacuum potential, which was calculated
with εi ) εo )1, yielded the net solvent reaction field potential that
was added to the molecular Hamiltonian in the self-consistent density
functional calculation. The cycle of ESP fitting, reaction field
calculation and density functional calculation was repeated until full
convergence of the molecular energy was achieved. The solvation
energy was determined from the difference between the molecular
energies in the solvent and in gas-phase states. A more detailed
description of the methodology can be found elsewhere.6a,b

4. Cluster Models. Within the solute region where a discrete cluster
model was needed, we adopted a cluster [M(H2O)6]m+ (m) 2, 3; M)
Mn, Fe) as the first hydration shell model (Figure 1a). The structure
of the cluster was determined through gas-phase geometry optimization
by the density functional method. In order to examine the effects of
the second hydration shell, 12 water molecules were added to the
[M(H2O)6]m+ cluster forming hydrogen bonds to the waters in the first
shell. The distances and angles between the first and second shell
waters in the large cluster [M(H2O)18]m+ were optimized using the
Discover module in Insight II (Biosym Technologies, Inc.). The
configuration of the large cluster is shown in Figure 1b. Similar
techniques were applied to build the structures of the clusters

[M(OH)(H2O)5](m-1)+ and [M(OH)(H2O)17](m-1)+, in which one water
molecule in the first shell is deprotonated (Figure 1c,d).

Results and Discussion

1. Gas-Phase Geometry Optimization. Scattering and
spectroscopic methods, such as X-ray or neutron diffraction,
EXAFS, XANES, and NMR, have been extensively applied to
probe the structure of the first hydration shells of metal cations.26

The determination of hydration numbers shows that there are
six water molecules in the first hydration shell of most di- or
trivalent transition metal cations. The [M(H2O)6]m+ cluster is
thus a reasonable static model for the first solvent coordination
shell. Åkessonet al.carried out a series of ab initio calculations
on [M(H2O)6]m+ for first- and second-row transition metals at
the HF-SCF level with medium-sized basis sets and effective
core potentials (ECP).27 Waizumi et al. also reported a local
spin density functional calculation on these same clusters.28

Following this work, the starting conformation for geometry
optimization was one withTh symmetry. During the course of
optimization, Jahn-Teller effects decreased the symmetry to
D2h in Mn3+ and Fe2+ cases. As a constraint, the orientations
of the water molecules were retained. The internal water
geometry was kept rigid at gas phase values (O-H bond
distance 0.958 Å and H-O-H angle 104.5°), as optimized by
the current density functional method. The optimized M-O
distances, together with available experimental values29 and
other calculated data, are summarized in Table 1.
As demonstrated in Table 1, the density functional optimized

M-O distances in [M(H2O)6]m+ are in good agreement with
experiment, lying within the range of experimental values. (The
experimental values vary to some extent depending on coun-
terions and measurement methods.26) Compared to other
theoretical values, density functional calculations using DGauss
at the LDA level gave consistently shorter M-O distances for
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Figure 1. Structures of the discrete cluster models: (a) [M(H2O)6]m+;
(b) [M(H2O)18]m+; (c) [M(OH)(H2O)5](m-1)+; (d) [M(OH)(H2O)17](m-1)+.
This figure was prepared using MOLSCRIPT: Kraulis, P. J.J. Appl.
Crystallogr.1991, 24, 946.

Table 1. M-O distances (in Å) in [M(H2O)6]m+

expta
DFT-
(NL)b

DFT-
(LDA) c

ab
initiod

[Mn(H2O)6]2+ 2.175e(2.17-2.20) 2.197 (6) 2.121 (6) 2.233 (6)
[Mn(H2O)6]3+ 1.991f 1.952 (4) 1.99 (4)

2.114 (2) 2.15 (2)
[Fe(H2O)6]2+ 2.126e(2.10-2.28) 2.127 (4) 2.070 (4) 2.185 (6)

2.132 (2) 2.075 (2)
[Fe(H2O)6]3+ 1.995f (1.99-2.06) 2.067 (6) 2.062 (6)

aData in parentheses represent the M-O distance ranges observed
by other experiments.26a b This work. The number of equivalent
distances is indicated in parentheses.cUsing the DGauss program with
(12s9p5d)/[5s3p2d] GTO basis sets for transition metals, (9s5p1d)/
[3s2p1d] basis set for oxygen, and (5s)/[2s] for hydrogen.28 dGeometry
optimized at HF-SCF level. Relativistic ECP and [5s4p3d] basis sets
for transition metals and [9s5p] and [4s] basis sets for oxygen and
hydrogen, respectively.27d eTutton salt, mean M-O value.29a f Alum
salt, mean M-O value.29b
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the two divalent complexes. This is not surprising, since LDA
methods generally tend to underestimate bond lengths.8 The
ab initio results agree with the NL density functional ones
reasonably well. Jahn-Teller distortions are found for d4 [Mn-
(H2O)6]3+ and d6 [Fe(H2O)6]2+ in both the DFT and ab initio
calculations. We observe an axial elongation in [Mn(H2O)6]3+

and [Fe(H2O)6]2+, with energy gains of 2.2 and 1.6 kcal/mol,
respectively. Such shallow wells and axial elongations were
reported in other calculations as well. Ab initio calculations
showed a gain in energy of 2.8 kcal/mol for [Mn(H2O)6]3+.27b

Experimental information on the structural details of the
second hydration shell is scarce and uncertain compared with
that for the first shell. X-ray diffraction measurements of some
di- and trivalent manganese and iron salts suggest that the
hydration number is about 12.26 This has been supported by
several molecular simulation analyses.30a-c The arrangement
of these 12 water molecules is not clear, however, and a full
geometry optimization of the whole cluster [M(H2O)18]m+ by
the density functional method is currently not feasible. Since
direct bonding between the metal center and the second-shell
water molecules is relatively weak, the location is determined
mainly by hydrogen-bonding and steric interactions. Starting
from the optimized [M(H2O)6]m+ structure, we positioned the
12 second-shell water molecules in such a way that each binds
to only one hydrogen atom from a water molecule in the first
shell with the second shell oxygen atoms oriented toward the
corresponding hydrogen atom. The larger cluster preserved the
symmetry of the smaller one, and the H(1)‚‚‚O(2) distances were
optimized using Discover. After the outer shell was constructed,
the inner shell was allowed to breathe over a small range and
the M-O(1) distances were then readjusted by a quadratic fitting
based on several single-point density functional energy calcula-
tions. The structural relaxation of the first hydration shell in
response to the second hydration shell was thus included in the
[M(H2O)18]m+ cluster model. The readjusted M-O(1) distances
and other geometry parameters of [M(H2O)18]m+ are shown in
Table 2.
The most pertinent parameters in Table 2 are M-O(2) and

O(1)-O(2) distances. Again, the calculated values compare
fairly well with experimental ones. Due to the flexibility of
the water molecules in the second shell, the experimental

M-O(2) distances span a wide range.26 All of the calculated
M-O(2) lengths lie within this range. The calculated data show
that O(1)-O(2) distances in the trivalent complexes are shorter
than those in the divalent complexes. This observation is
confirmed by experiment. The average H(1)‚‚‚O(2) distances
are in the typical hydrogen-bond range. Comparing the
M-O(1) lengths in Table 2 with Table 1 reveals that, in the
presence of the second hydration shell, the first shell expands
slightly. The inner shells with d5 metal cations are more rigid
than the others, with a M-O(1) bond lengthening of less than
0.01 Å, while for d4 and d6 cations the average lengthening is
about 0.04 Å. Furthermore, the energy gain from the structural
expansion is very marginal, only 0.4-0.8 kcal/mol. Thus, the
discrete cluster models optimized in gas phase should not deviate
much from those in solution phase. Marcoset al., who studied
the effects of the solvent reaction field on the geometry of
several hexahydrated metallic cations by means of a gradient
analytical method,5d observed that the solvent reaction field
lengthens the M-O distance by only 0.02-0.05 Å.
The deprotonated clusters possess onlyCs symmetry. In

addition to the M-O distances, the O-H lengths and M-O-H
angles of the hydroxide groups are listed in Table 3. No direct
comparison to the experimental structure can be made due to
the lack of experimental data. Since the hydroxide group is in
the inner shell, one of the second-shell water molecules flips
over to form a strong hydrogen bond to the O-H group and
the second shell structure in [M(OH)(H2O)17](m-1)+ changes
accordingly (see Figure 1d). Some of optimized geometrical
parameters for the large clusters are shown in Table 3 as well.
We did not repeat the readjustment of the M-O(1) distances
in the inner shell to obtain the marginal energy gain from the
structural breathing mode.
Due to the flexibility of the water molecules in the second

hydration shell, the highly symmetrical model we have chosen
for large clusters represents only one of many possible
configurations for the second-shell structure. It may not
correspond to the global minimum in potential energy surface.
This could introduce an error to the internal energy of the cluster.
However, since a consistent symmetry constraint was imposed
on the clusters with different charges and the water-water
repulsion in the second shell was minimized by force field
methods, we expect that such a single configuration model can
reasonably account for the effects of the second hydration shell
in reduction and deprotonation procedures. Further, our main
focus is on the energy differences needed to calculate redox
potentials and pKa’s. To sample more configurations, a mo-
lecular dynamics (MD) scheme has to be employed. For
instance, King and Warshel used a three-region model to
represent an ion surrounded by a sphere of polar solvent
molecules and implemented proper surface or polarization

(30) (a) Zeng, J.; Crow, J. S.; Hush, N. S.; Reimers, J. R.J. Phys. Chem.
1994,98, 11075. (b) Clementi, E.; Barsotti, R.Chem. Phys. Lett.1978,
59, 21. (c) Radnai, T.; Palinkas, G.; Szasz, G. I.; Heinzinger, K.Z.
Naturforsch. 1987, A36, 1076. (d) King, G.; Warshel, A.J. Chem.
Phys. 1989,91, 3647.

Table 2. Bond Lengthsa (in Å) in [M(H 2O)18]m+

calc exptb

[Mn(H2O)18]2+ Mn-O(1) 2.204 2.17-2.20
Mn-O(2) 4.433 4.17-4.43
O(1)-O(2) 2.693 2.71-2.78
H(1)‚‚‚O(2) 1.735

[Mn(H2O)18]3+ Mn-O(1) 1.992, 2.154
Mn-O(2) 4.194, 4.327
O(1)-O(2) 2.613
H(1)‚‚‚O(2) 1.666

[Fe(H2O)18]2+ Fe-O(1) 2.162, 2.170 2.095-2.28
Fe-O(2) 4.374, 4.379 4.30-4.51
O(1)-O(2) 2.694 2.84-2.87
H(1)‚‚‚O(2) 1.736

[Fe(H2O)18]3+ Fe-O(1) 2.069 1.99-2.05
Fe-O(2) 4.273 4.09-4.80
O(1)-O(2) 2.627 2.621-2.77
H(1)‚‚‚O(2) 1.670

aM-O(1) distance readjusted by DFT point calculations. Mean
M-O(2), O(1)-O(2), and H(1)-O(2) distances determined by mo-
lecular mechanics method.bReference 26a.

Table 3. Calculated Geometry Parametersa in M(OH)(H2O)17(m-1)+

Mn(OH)-
(H2O)17+

Mn(OH)-
(H2O)172+

Fe(OH)-
(H2O)17+

Fe(OH)-
(H2O)172+

M-O* b 1.870 1.729 1.799 1.787
M-O*-Hb 128 123 128 132
O*-Hb 0.978 0.993 0.978 0.995
O*‚‚‚Hb 1.851 2.151 1.796 2.143
M-O(1)c 2.240 2.105 2.242 2.131

2.352 2.185 2.310 2.183
M-O(2) 4.545 4.358 4.536 4.365
O(1)‚‚‚O(2) 2.694 2.641 2.693 2.627
H‚‚‚O(2) 1.737 1.684 1.733 1.671

aDistances in Å and angles in deg.bO* represents the oxygen in
the hydroxo group.c The first number corresponds to distance of the
M-O(1) trans to M-O*H. The second number is the mean distance
value of the other M-O(1) cis to M-O*H.
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constraints.30d In this way, the effects of a second or third
hydration shell and the solvent reaction field, which have been
found significant both for geometry and energetics, can be
included in the MD simulations. However, implementation of
this in conjunction with a good SCF field and geometry
optimization of the first- and second-shell waters is a difficult
computational task, and has not been attempted in our work.
2. Gas-Phase and Solvation Energetics.For hydrated

metal cations, the water molecules play a role not only as solvent
but also as the ligands in the inner shell, binding tightly to the
metal center.31 In the combined discrete-continuum model,
the total solvation or hydration energy is made up of both the
discrete and the continuum contributions. In order to calculate
the properties of metal cations, both components must be
computed accurately, and calibrations are necessary.
The binding strength of the first-shell water molecules to a

metal center can be related to the gas-phase average binding
energy∆Eb(1)(M-H2O) in the cluster [M(H2O)6]2+/3+ by

The density functional calculated values of∆Eb(1)(M-H2O) are
listed in Table 4, together with the ab initio results27d for
comparison. For divalent complexes, the DFT and ab initio
results compare very well. For trivalent complexes, the DFT
values are about 9 kcal/mol larger. The lack of correlation and
the modest size of the HF basis set of the ab initio calculations,
which were carried out at the HF-SCF level, might be the reason
for the discrepancy, especially because there are highly charged
complexes where more flexible basis sets are needed.
The binding energy contribution from each water molecule

in the second shell is calculated according to

These calculated values are included in Table 4 as well.∆Eb(2)-
(M-H2O) is the result of the bonding interaction between the
metal cations and water molecules in the second shell and
hydrogen bonding between the first and second shells. The
calculated ∆Eb(2)(M-H2O) values show that the bonding
interaction between the second-shell water molecules and the
metal center is rather weak for the divalent cations, with only
a few kcal/mol change after subtracting∆Eb(2)(M-H2O) from
the normal hydrogen bond strength (5-7 kcal/mol per H-bond)
in water clusters.32 For the trivalent cations, the∆Eb(2)(M-
H2O) values suggest either a nonnegligible bonding between
the metal center and the second-shell water molecules or strong
hydrogen bonds between the first and second shells.

The hydration enthalpy of metal cations can be determined
by thermochemical methods.33 In order to relate the calculated
quantities to the experimental hydration enthalpy (∆H°hyd) at
298 K, correction terms have to be considered as follows:

∆Eb is the total binding energy of the gas phase cluster
[M(H2O)6] or [M(H2O)18], which is 6∆Eb(1) and [12∆Eb(2) +
6∆Eb(1)], respectively.∆Esol represents the calculated solvation
free energy of the cluster corresponding to the procedure
[M(H2O)nm+(g)] f [M(H2O)nm+(aq)], listed in Table 4. This
term contains the entropic contribution to the solvation free
energy for the continuum dielectric part. We neglect this
contribution in eq 3 and Table 4.∆Hvap is the heat of
vaporization of water. Density functional calculations on the
clusters (H2O)6 and (H2O)18 give average vaporization energies
of 8.61 and 11.05 kcal/mol,32b respectively. Here the experi-
mental∆Hvap value34 of 10.67 kcal/mol is used in eq 3. The
∆E(Cp) term arises from the difference in heat capacity of the
components of the system, which is a small correction of about
1 kcal/mol at 298 K. An estimate of∆Ezp, the difference in
vibrational zero-point energy in forming the clusters, requires
calculation of the vibrational frequencies of the clusters, which
is too expensive for systems like [M(H2O)18]. ∆Erel and∆Egeom
are corrections due to relativistic effects for metal centers and
geometry relaxation for H2O during the formation of the clusters.
∆Ezp usually reduces the total binding energy by a few kcal/
mol, while∆Erel and∆Egeomincrease∆Eb comparably. On the
whole, these three terms tend to cancel to some extent and they
are not included in the calculated∆H°hyd values in Table 4.

The agreement between the calculated and experimental
∆H°hyd values is very impressive. For divalent cations, even
the small cluster model reproduces the experimental measure-
ments very well. For trivalent cations, the larger clusters
including the second shells bring the calculated data closer to
the experimental results. These results indicate that the methods
and cluster models outlined here provide a reasonable approach
to studying cations both in gas phase and in solution. However,
the current method and model cannot account for the fluctuations
in solvation energy,∆Esol, and internal energy, arising from
configurational variations, especially for larger clusters. Such
effects might be evaluated by quantum molecular dynamics or
Monte Carlo simulation, which is too expensive to be coupled
into the conventional density functional calculations. Recently,
Wesolowski and Warshel developed a free energy perturbation
scheme using the frozen density functional approach. This
method seems feasible to treat large clusters with many explicit
solvent water molecules in hydration shells, although charge

(31) (a) Marcus, Y.Chem. ReV. 1988, 88, 1475. (b) Marcus, Y.Ion
SolVation; Wiley: Chichester, U.K., 1986. (c) Richens, D. T.Perspect.
Bioinorg. Chem. 1993, 2, 245.

(32) (a) Suhai, S.J. Phys. Chem. 1995, 99, 1173. (b) Lee, C.; Chen, H.;
Fitzgerald, G.J. Chem. Phys.1994, 101, 4472.

(33) (a) Rosseinsky, D. R.Chem. ReV. 1965, 65, 467. (b) Smith, D. W.J.
Chem. Educ. 1977, 54, 540.

(34) Lide, D. R.Handbook of Chemistry and Physics, 73rd ed.; CRC
Press: Boca Raton, FL, 1972.

Table 4. Energetics of [M(H2O)6]m+ and [M(H2O)18]m+ in Gas Phase and Solutiona

∆Eb(1)(M-H2O)b ∆Esol ∆Hhyd°
DFT ab initiod

∆Eb(2)(M-H2O)c

DFT [M(H2O)6]m+ [M(H2O)18]m+ [M(H2O)6]m+ [M(H2O)18]m+ expte

Mn2+ 47.4 47.0 12.1 -197.9 -158.1 424 409 440
Mn3+ 111.8 102.5 22.7 -449.9 -308.2 1062 1073 1087
Fe2+ 50.9 49.6 12.2 -198.6 -158.5 445 431 465
Fe3+ 108.7 99.6 22.2 -443.9 -306.7 1037 1046 1060

a Energy in kcal/mol.bCalculated according to eq 1.cCalculated according to eq 2.d See footnoted in Table 1.27d eReference 33.

∆Eb
(1)(M-H2O)) 1/6{E[M

m+(g)] + 6E[H2O(g)]-

E[M(H2O)6
m+(g)]} (1)

∆Eb
(2)(M-H2O)) 1/12{12E[H2O(g)]+

E[M(H2O)6
m+(g)] - E[M(H2O)18

m+(g)]} (2)

-∆H°hyd ) -∆Eb + ∆Esol+ n∆Hvap+ ∆nRT-
∆E(Cp)- ∆Ezp + ∆Erel+ ∆Egeom (3)
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transfer to the frozen density water molecules is not allowed.35

In the next sections, we only use the solvation energy difference
∆∆Esol to calculate redox potentials and pKa values. The effect
of structural fluctuations is expected to be cancel to some extent.
Rough estimates of the solvation energy of ions or spherical

clusters can be made by the Born equation.30d,36 Åkessonet
al.27d used this approximation to calculate the solvation energy
corresponding to [M(H2O)6m+(g)] f [M(H2O)6m+(aq)]. By
choosing certain cavity radii, they obtained values of-222 kcal/
mol for [Mn(H2O)6]2+ and-540 kcal/mol for [Mn(H2O)6]3+.
Compared to our calculated∆Esol values in Table 4, the Born
equation results are too negative. The deviations for [Mn-
(H2O)6]2+ and [Mn(H2O)6]3+ are -24 and -90 kcal/mol,
respectively.
3. Redox Potentials.The gas phase and solution energetic

data in Table 4 enable us to compute the redox potentials for
Mn2+/Mn3+ and Fe2+/Fe3+ in aqueous solution. The calculation
is based on the thermodynamic cycle shown in Scheme 1. The
overall reaction in aqueous solution is characterized by the
standard Gibbs free energy

and the redox potential is thus related to∆Gredox(aq) as

whereF is the Faraday constant, 23.06 kcal mol-1 V-1. By
using calculated gas phase ionization potentials IP(g) and
differences in solvation energy∆∆Esol (reduced- oxidized
species), the redox potentialEredox° can be calculated according
to

with all terms in units of eV.∆SHE represents the standard
hydrogen electrode potential of-4.43 eV.37 ∆Erel and∆Egeom
are the relativistic and geometry relaxation corrections to the
IP(g)s. ∆Egeom is estimated from another density functional
calculation for a [M(H2O)]6m+ cluster in which the O-H
distance and H-O-H angle for the ligated H2O molecules are
optimized. In general, the O-H distance is observed to be
lengthened and H-O-H angle to be opened slightly. In
Mn(H2O)62+ and Fe(H2O)63+, in which the six water molecules
are geometrically equivalent, the O-H bond lengths increase
by 0.023 and 0.032 Å and H-O-H angles increase by 1.5 and
2.0°, respectively, compared with the optimized gas-phase
values. In Mn(H2O)63+, the O-H bonds lengthen by 0.033 and
0.030 Å, the H-O-H angles open by 3.5 and 0.5°, respectively,
for the four equatorial water ligands and two axial water ligands.

Similarly, the changes in Fe(H2O)62+ are 0.019 and 0.017 Å
for O-H distances and 1.0 and 0.6° for H-O-H angles. We
assume that the energy gained from such a relaxation is the
same for the [M(H2O)]18m+ cluster. The calculatedEredox° and
other terms in (6) are tabulated in Table 5.
The experimental third ionization potentials for Mn and Fe

atoms are 33.7 and 30.7 eV, respectively.38 Our calculated values
correspond to the energy differences between the states Mn2+-
(6S) and Mn3+(5D), Fe2+(5D) and Fe3+(6S). Taking into account
the relativistic corrections, the calculated values are 34.3 and
31.6 eV for Mn and Fe, respectively, giving an absolute error
of 0.6-1.1 eV and a relative error of 2-4%.39 The experimental
entropies of Fe2+(aq) and Fe3+(aq) are estimated to be-108
and-286 J K-1 mol-1, and thus theT∆Sfor Fe3+(aq)f Fe2+-
(aq) at 298 K is 0.55 eV.40 We use this value for Mn3+(aq)f
Mn2+(aq) as well as for all other cluster cases.
The experimental redox potentials for Mn2+/Mn3+ and Fe2+/

Fe3+ pairs are 1.56 and 0.77 V, respectively.35 When the DFT
calculations are carried out on naked metal cations in a
continuum solvent, theEredox° obtained deviate from the
experimental data by 2-4 eV. Since the continuum solvation
energy is a free energy and therefore includes entropy, no
empirical entropy correction is made for naked metal ions in
the continuum solvent. The small cluster model including the
first hydration shell brings the calculated values closer to the
experimental ones with a deviation about 1 V. Inclusion of
the second hydration shell greatly improves the calculation,
resulting in deviations of less than 0.3 eV. Figure 2 depicts
the convergence toward experimental values. The similarity
between the final computed value and the experimental one for
Mn2+/Mn3+ may be somewhat fortuitous, as the experimental
value was measured at high salt concentration41 while our
calculations assumed a solution with zero ionic strength.40c

Nevertheless, with a proper cluster model, the current method
yields redox potentials that are accurate to about 200-400 mV.9
Recent calculations ofEredox° by this method for a model of
the active site in human mitochondrial superoxide dismutase
(MnSOD) obtained a value of+0.17 V, compared with
experimental values of+0.26 V for MnSOD fromBacillus
stearothermophilusand+0.31 V from Escherichia coliMn-
SOD,10 although the possibility of coupled protonation on
reduction complicated the analysis of this result. Wheeler has
reported that in calculations onp-benzoquinone by a hybrid
Hartree-Fock/density functional and thermodynamic perturba-
tion/molecular dynamics method, the calculated one-electron
redox potential was accurate to 100 mV.42

4. Absolute pKa Values. The solvated metal cations,
especially the highly charged ones, can deprotonate a coordi-
nated water molecule to form a hydroxo ligand. Such depro-
tonations have often been postulated to explain the hydrolytic

(35) (a) Wesolowski, T. A.; Warshel, A.J. Phys. Chem. 1993, 97, 8050.
(b) Wesolowski, T. A.; Warshel, A.J. Phys. Chem. 1994, 98, 5183.

(36) (a) Krauss, M.; Stevens, W. J.J. Am. Chem. Soc.1990, 112, 1460.
(b) Garmer, D. R.; Krauss, M.J. Am. Chem. Soc.1992, 114, 6487.

(37) Reiss, H.; Heller, A.J. Phys. Chem.1985, 89, 4207.

(38) Moore, C. E.Atomic Energy LeVel; Natl. Bur. Stand.: Washington,
DC, 1958.

(39) (a) Becke, A. D.J. Chem. Phys. 1993, 98, 5648. (b) Russo, T. V.;
Martin, R. L.; Hay, P. J.J. Chem. Phys. 1994, 101, 7729. (c) Eriksson,
L. A.; Pettersson, L. G.; Siegbahn, P. E. M.; Wahlgren, U.J. Chem.
Phys.1995,102,872.

(40) (a) Johnson, D. A.Some Thermodynamic Aspects of Inorganic
Chemistry,2nd ed.; Cambridge University Press: Cambridge, U.K.,
1982. (b) Atkins, P. W.Physical Chemistry, 2nd ed.; Freeman: San
Francisco, CA, 1982. (c) Most redox potential calculations include
an empirical correction for the salt concentration extrapolating to zero
concentration based on Debye-Hu¨ckel theory.40bThis should remove
some of the inconsistency between our calculations and experiment.
(d) Again, corrections based on extended Debye-Huckel theory will
decrease but not eliminate this discrepancy for acidities at high ionic
strength.

(41) Cotton, F. A.; Wilkinson, G.AdVanced Inorganic Chemistry, 5th ed.;
Wiley: New York, 1988.

(42) Wheeler, R. A.J. Am. Chem. Soc.1994, 116, 11048.

Scheme 1

∆Gredox(aq)) ∆Gredox(g)+ ∆Gsol(M
3+) - ∆Gsol(M

2+) (4)

∆Gredox(aq)) -FEredox° (5)

Eredox° ) IP(g)- ∆∆Esol + T∆S(aq)+ ∆SHE+ ∆Erel +
∆Egeom (6)
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mechanisms of metalloenzyme catalysis,43aand some quantum
chemical calculations on this deprotonation process in enzymes
like carbonic anhydase have been reported.43b If only one of
the first-shell water molecules is deprotonated, the absolute pKa

value, or the measurement of the capacity of deprotonation or
the acidity of the metal cations, can be calculated on the basis
of the thermodynamic cycle shown in Scheme 2 from the
equation

By using the calculated proton affinity, PA(g), of [M(OH)-
(H2O)n-1](m-1)+ and the solvation energy,∆Esol, of clusters
[M(H2O)n]m+ and [M(OH)(H2O)n-1](m-1)+, eq 7 becomes

where-267.7 kcal/mol corresponds to the sum of the solvation
free energy of the proton (-260.5 kcal/mol), which is estimated
from the absolute potential correction for the standard hydrogen
electrode,∆SHE) -4.43 eV,37 plus the translational entropy
contribution to the free energy of a proton,-7.2 kcal/mol at

300 K. One approximation introduced here is the assumption
that the internal entropies of the clusters [M(H2O)n]m+ and
[M(OH)(H2O)n-1](m-1)+ are similar and approximately cancel
out. The internal vibrational/configurational entropy should
increase as the net cluster charge decreases. However, the
shorter metal-hydroxyl oxygen bond length (see Tables 2 and
3) in the deprotonated form should lead to significantly lower
entropy for this bond. Which of these two compensating effects
is larger is not clear.
The proton affinity is calculated from the total binding energy

difference, ∆∆Eb, of the species [M(H2O)n]m+, [M(OH)-
(H2O)n-1](m-1)+, and a proton with several correction terms

The relativistic effects only equate to about-0.1 kcal/mol, as
the bond broken is not directly bonded to the metal center. The
energy∆EBSSEfrom the basis set superposition error (BSSE) is
expected to be insignificant, although it can be estimated by a
counterpoise correction.6a The size of the clusters prevent an
accurate estimate of vibrational zero point energy difference
based on frequency calculations. Given that the lost vibrational
freedom in the deprotonated cluster is pertinent mainly to the
O-H bond in the ligated water molecule, the zero point energy
difference between monoaquo and monohydroxo complexes
gives a good approximation for∆Ezp. In view that there are
fewer ligated waters in the monoaquo and monohydroxo models,
and in order to correctly account for the effective net charge in
the metal centers, we assign a lower net charge to the clusters.
That is, M(H2O)+ simulates [M(H2O)6]2+ , while M(H2O)2+

simulates [M(H2O)6]3+. A similar strategy applies to M(OH)
and M(OH)+. The final calculated harmonic frequencies of
M(H2O)n+ and M(OH)(n-1)+ are listed in Table 6. The
calculated pKa values derived with these frequencies and relevant
terms in eqs 8 and 9 are summarized in Table 7.
The experimental pKa values determined by potentiometric

titrations44 are available for Mn2+, Mn3+, Fe2+, and Fe3+. All
of these values were determined at different ionic strengths.

(43) (a) Lippard, S. J.; Berg, J. M.Principles of Bioinorganic Chemistry;
University Science Books: Mill Valley, CA, 1994. (b) Åqvist, J.;
Warshel, A.Chem. ReV. 1993, 93, 2523.

(44) (a) Yatsimirksii, K. B.; Vasil’ev, V. P.Instability Constants of Complex
Compounds; Pergamon: New York, 1960. (b) Baes, C. J.; Mesmer,
R. E.The Hydrolysis of Cations; Krieger: Malabar, India, 1986. (c)
Fontano, S.; Brito, F.Inorg. Chim. Acta1968, 2, 179. (d) Macartney,
D. H.; Sutin, N.Inorg. Chem.1985,24, 3403. (e) Flynn, C. M., Jr.
Chem. ReV. 1984, 84, 31.

Table 5. Calculated and Experimental Redox Potentialsa

IPred(g) ∆∆Esol T∆S ∆Erel ∆Egeom Eredox°(calc) Eredox°(exp)
Mn3+ + ef Mn2+ 34.52 24.58 -0.21 5.30
Mn(H2O)63+ + ef Mn(H2O)62+ 17.76 10.93 0.55 -0.11 -0.18 2.66
Mn(H2O)183+ + ef Mn(H2O)182+ 12.27 6.51 0.55 -0.11 -0.18 1.59 1.56b

Fe3+ + ef Fe2+ 31.81 24.56 -0.21 2.61
Fe(H2O)63+ + ef Fe(H2O)62+ 16.78 10.64 0.55 -0.09 -0.17 2.00
Fe(H2O)183+ + ef Fe(H2O)182+ 11.63 6.43 0.55 -0.09 -0.17 1.06 0.77c

a Eredox° in V and other terms in eV.bReferences 35 and 41. Measured in 3 M LiClO4. cReference 35.

Figure 2. Convergence of calculated one-electron redox potentials with
increasing size of cluster models.

Scheme 2

1.37pKa ) ∆Gdp(aq)) -∆Gsol[M(H2O)n
m+] + ∆Gdp(g)+

∆Gsol[M(OH)(H2O)n-1
(m-1)+] + ∆Gsol[H

+] (7)

1.37pKa ) PA(g)- ∆Esol[M(H2O)n
m+] +

∆Esol[M(OH)(H2O)n-1
(m-1)+] - 267.7 kcal/mol (8)

Table 6. Calculated Vibrational Frequencies and Vibrational
Zero-Point Energies of M(H2O)m+ and M(OH)(m-1)+ a

frequency Ezp

Mn(H2O)2+ 460 (a1), 1616 (a1), 3551 (a1), 636 (b1),
3381 (b1), 504 (b2)

14.5

Mn(OH)+ 408, 761, 3586 6.8
Mn(H2O)+ 420 (a1), 1572 (a1), 3580 (a1), 452 (b1),

3646 (b1), 203 (b2)
14.1

Mn(OH) 622, 681, 3580 7.0

a Frequencies in cm-1 andEzp in kcal/mol.

PA(g)) ∆∆Eb + ∆Ezp + 5/2RT+ ∆Erel + ∆Egeom+
∆EBSSE (9)
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From the cluster model including only the first hydration shell
in which one water molecule is deprotonated, the calculated
absolute pKa values deviate from the experimental ones with
an error as large as 13 pH units for the trivalent cations. The
acidity of the metal cations is overestimated, indicating that the
deprotonated cluster is calculated to be too stable. Screening
the metal cations and the inner sphere by the second hydration
shell improves the calculation results substantially, and the
deviation decreases to about 6 pH units for the trivalent cations.
The result is better for the divalent cations, especially for Fe2+.
Overall, the computed data reproduces the observed experi-
mental trend, which shows Mn2+ is more basic than Fe2+ while
Mn3+ is more acidic than Fe3+ and that the trivalent cations
are far more acidic than the divalent cations. Further improve-
ments in the calculations of pKa values should take into account
two important factors we omitted in the theoretical method. The
entropy difference termT∆S is definitely not negligible and
should be included in eq 8 as discussed above. The ionic
strength, on the other hand, will shift pKa values to some extent,
especially for the trivalent cations, as cations like Mn3+ and
Fe3+ only exist in strongly acidic solutions and at high ionic
strength.40d The electrostatic interaction between counterions
and solute will stabilize the highly charged systems and balance
the overstabilization of the deprotonated clusters, which in turn
will raise the absolute pKa values. Experimentally, pKa shifts
on changing ionic strength have been observed. For example,
the experimental pKa value of Fe3+ increases from 2.2 to 2.8
when the ionic strength changes from 0 to 1 M.44

5. Roles of Discrete Hydration Shells.The results of the
calculations discussed above indicate that the larger cluster
model including at least two hydration shells is indispensable
in order to compute properties pertaining to solvation phenom-
ena. The role of the first shell is obvious as it is the main cause
of the ligand field stabilizing the central metal ions through
direct metal-oxygen bonds. The effects of the second shell
are not negligible, however, and a more detailed analysis could
be instructive.
Table 8 presents the total binding energy difference calculated

by subtracting the total binding energy of the small cluster from
that of the larger cluster. The solvation energy difference,
calculated in a similar fashion, is included as well. If the cluster
model is big enough,∆∆Eb will converge to a value corre-
sponding to product of the number of intershell hydrogen
bonds times the strength of each plus a contribution from
intrashell hydrogen bonds (in 18-water clusters, there are no
intrashell hydrogen bonds, but there will be for larger clusters).
Both∆∆Esol and∆Esol will eventually decrease to zero, as the
solvent will be undisturbed by a very large cluster.∆Esol is
the free energy of solvation of the cluster in the continuum
dielectric and, therefore, gives a net lowering of free energy of
the cluster in solution compared with the isolated cluster plus
bulk solvent. The data in Table 8 indeed show such a trend as
the total charge of the clusters is lowered. For the clusters with

a net charge of+3, ∆∆Eb is as large as about 270 kcal/mol.
This number decreases dramatically to 75 kcal/mol for the+1
cluster, which can be exclusively attributed to the 12 hydrogen
bonds between the water molecules in the first and second shells,
given the normal hydrogen bond strength of 5-7 kcal/mol.32

Thus for systems with low charges, a small cluster model might
be sufficient to smooth the gap between the first hydration shell
and bulk solvent, while for the highly charged systems, larger
cluster models with more hydration shells are needed to damp
down the perturbation created by the highly charged cations.
Such perturbations result in the formation of strong hydrogen
bonds between the first and second hydration shells and enhance
hydrogen bonding to even further shells. Bergsto¨rm et al.45

applied an infrared absorption double-difference method to
explore the hydration shells of some di- and trivalent metal
cations. By isotropic substitution of hydrogen atoms and

(45) (a) Bergstro¨m, P.-A.; Lindgren, J.; Read, M.; Sandstro¨m, M. J. Phys.
Chem. 1991, 95, 7650. (b) Bergstro¨m, P.-A.; Lindgren, J.Inorg. Chem.
1972, 31, 1529.

Table 7. Absolute pKa Values of Hydrated Metal Cationsa

∆∆Eb ∆Ezp ∆Egeom ∆Esol[M(OH)(H2O)n-1]b pKa(calc) pKa(exp)

Mn(H2O)62+ f Mn(OH)(H2O)5+ + H+ 154.6 -7.1 +1.2 -78.4 1.4
Mn(H2O)182+ f Mn(OH)(H2O)17+ + H+ 234.5 -7.1 +1.2 -101.2 14.0 10.6c

Mn(H2O)63+ f Mn(OH)(H2O)52+ + H+ 11.6 -7.7 +4.4 -206.7 -10.8
Mn(H2O)183+ f Mn(OH)(H2O)172+ + H+ 124.8 -7.7 +4.4 -172.4 -6.5 0.1d

Fe(H2O)62+ f Fe(OH)(H2O)5+ + H+ 152.6 -7.1 +0.6 -74.3 3.1
Fe(H2O)182+ f Fe(OH)(H2O)17+ + H+ 228.2 -7.1 +0.6 -101.7 9.0 9.5e

Fe(H2O)63+ f Fe(OH)(H2O)52+ + H+ 18.7 -7.7 +3.9 -206.7 -10.5
Fe(H2O)183+ f Fe(OH)(H2O)172+ + H+ 132.5 -7.7 +3.9 -174.7 -4.0 2.2f

a Energy terms in kcal/mol and pKa’s in pH units.b ∆Esol[M(H2O)n] can be found in Table 4.c In 1 M Na2SO4.44c d In 2 M LiClO4.44d e In
alkaline solution.44b f Ionic strengthµ ) 0.44e

Table 8. Binding Energy and Solvation Energy Difference between
Large and Small Clustersa

M tot. charge
∆Eb[ML(H 2O)12m+] -

∆Eb[ML m+]
∆Esol[ML(H 2O)12m+] -

∆Esol[ML m+]

ML ) M(H2O)6
Mn3+ +3 272.2 141.7
Fe3+ +3 266.4 137.2
Mn2+ +2 145.2 39.8
Fe2+ +2 146.4 40.1

ML ) M(OH)(H2O)5
Mn3+ +2 158.9 34.5
Fe3+ +2 151.6 32.0
Mn2+ +1 74.5 22.8
Fe2+ +1 70.9 27.4

a Energies in kcal/mol.

Table 9. Energy Contributions (kcal/mol) to Solvation Energy
∆Esol

∆Esolel(Fg) ∆Epol ∆Estrain

Mn(H2O)62+ -198.0 -0.1 0.2
Mn(H2O)182+ -155.0 -8.0 4.9
Mn(H2O)63+ -449.0 -1.2 0.4
Mn(H2O)183+ -306.8 -4.7 3.3
Fe(H2O)62+ -198.7 -0.5 0.6
Fe(H2O)182+ -154.9 -8.4 4.8
Fe(H2O)63+ -443.3 -1.1 0.5
Fe(H2O)183+ -306.1 -5.1 4.4

Mn(OH)(H2O)5+ -71.5 -10.7 3.8
Mn(OH)(H2O)17+ -89.6 -21.8 10.2
Mn(OH)(H2O)52+ -205.6 -2.6 1.5
Mn(OH)(H2O)172+ -165.1 -12.1 4.8
Fe(OH)(H2O)5+ -68.9 -9.8 4.5
Fe(OH)(H2O)17+ -96.0 -22.2 16.5
Fe(OH)(H2O)52+ -204.8 -3.3 1.4
Fe(OH)(H2O)172+ -166.8 -11.7 3.8
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determination of O-H and O-D stretching frequencies, they
were able to extract spectra of ion-perturbed HDO molecules
and to assign the spectra to the first and second hydration spheres
of the cations. They concluded that there is no perturbation of
water molecules beyond the primary cation hydration sphere
for divalent ions, but the water molecules in the second shell
of trivalent cations form hydrogen bonds to further waters that
are comparable in strength to those formed by the first-shell
water molecules to the second shell in divalent cation complexes.
The calculated solvation energy can be decomposed into

several contributions according to6a

∆Esolel(Fg) is the solvation energy from the gas-phase charge
distribution in which any solute (discrete cluster) polarization
induced by the continuum solvent is neglected.∆Epol accounts
for the solvation energy gained from such solute polarization,
while ∆Estrain is the electronic energy cost due to charge
redistribution or deformation. The calculated values of these
terms are presented in Table 9 and show that small clusters,
especially M(H2O)6m+, are very weakly polarizable. The∆Epol
and∆Estrain contributions to solvation energy in such clusters
are almost negligible. In general, the∆Epol and ∆Estrain
contributions are important in larger clusters and even more
important in the metal-hydroxyl systems where there are
significant dipole moments.
The highly charged metal center induces a redistribution of

the charges over the water molecules in the cluster. The charge
of water in the hydration shells may be quite different from
that of bulk solvent. Table 10 presents the calculated Mulliken
and ESP charges for the clusters in gas phase and in solution.
Both the Mulliken and ESP charges show a nonzero total charge
for the second shell water molecules, indicating a charge flow
or charge transfer between the first and second shells. Dividing
the total charge of each shell by the number of water molecules,
the net charge carried by each water molecule decreases from
the first shell to the second. Compared with the Mulliken
charges, the ESP charges on the metal centers are closer to the
formal charges and the charge of each of the second shell water
molecules is negative although small. Thus the larger cluster
with more hydration shells allows charge transfer between the
inner and outer shells and modestly increases the charge on the
central metal ion based on the ESP charges. These details would
be missed in the pure continuum solvent model.

Conclusions
We have demonstrated that the combined density functional

and continuum dielectric theory is a useful tool for calculating

molecular properties in solution even for highly charged
transition metal complexes with net spin. The calculated
hydration energies of metal ions and the redox potentials
compare fairly well with experimental data. A relatively large
deviation still remains for calculated pKa values of water ligand
deprotonation, especially for the systems with higher charge.
But the correct trend in the acidity of the metal ions is found,
both for the much greater acidity of the M3+ compared with
M2+(aq) ions and for Mn versus Fe. These calculations pave
the road for the future study of active site models of metal-
loenzymes in which charged and high-spin transition metals are
surrounded by low dielectric protein environments.
In addition to devising a suitable theoretical methodology,

we have also shown the importance of adopting a reasonable
discrete supermolecular cluster model that represents the solute
inside the cavity embedded in the dielectric continuum. The
calculated redox potentials and pKa values converge toward
experimental data with increasing size of the cluster model. The
water molecules in the first hydration shell form direct covalent
bonds to the metal center, playing the role of a ligand field to
stabilize the ions. The second shell is also indispensable as
this buffer shell retains strong hydrogen bonds and electron
transfer between the inner and outer shells and offers a better
description of the solute-solvent dispersion interaction as well.
The higher the charge that the metal center carries, the more
shells should be included in the cluster model. Although the
necessity of including the second shell in clusters has been
discussed,27e,30d,35,46this study represents the first test in which
the larger cluster model for the hydrated metal cations is
considered explicitly with high-level self-consistent field quan-
tum mechanical calculations combined with a continuum
dielectric model.
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Table 10. Mulliken and ESP Charges of M(H2O)nm+

Mulliken (gas) ESP(gas) ESP(solv)

M 6H2O(1) 12H2O(2) M 6H2O(1) 12H2O(2) M 6H2O(1) 12H2O(2)

Mn(H2O)62+ 0.932 1.068 1.874 0.126 1.883 0.117
Mn(H2O)182+ 0.913 0.720 0.367 2.180 0.369 -0.549 2.025 0.489 -0.514
Mn(H2O)63+ 1.052 1.948 2.149 0.851 2.160 0.840
Mn(H2O)183+ 0.986 1.363 0.651 2.582 0.737 -0.319 2.379 0.993 -0.372
Fe(H2O)62+ 0.752 1.248 1.853 0.147 1.868 0.132
Fe(H2O)182+ 0.874 1.020 0.105 2.250 0.576 -0.826 2.122 0.609 -0.731
Fe(H2O)63+ 0.961 2.039 2.004 0.996 2.015 0.985
Fe(H2O)183+ 0.927 1.433 0.640 2.358 0.916 -0.274 2.266 1.083 -0.349

∆Esol ) ∆Esol
el(Fg) + ∆Epol + ∆Estrain (10)
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